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A B S T R A C T   

Remote sensing provides full-coverage and dynamic water quality monitoring with high efficiency and low 
consumption. Deep learning (DL) has been progressively used in water quality retrieval because it efficiently 
captures the potential relationship between target variables and imagery. In this study, the multimodal deep 
learning (MDL) models were developed and rigorously validated using atmospherically corrected Landsat remote 
sensing reflectance data and synchronous water quality measurements for estimating long-term Chlorophyll-a 
(Chl-a), total phosphorus (TP), and total nitrogen (TN) in Lake Simcoe, Canada. Since TP and TN are non- 
optically active, their retrievals were based on the fact that they are closely related to the optically active 
constituents (OACs) such as Chl-a. We trained the MDL models with one in-situ measured data set (for Chl-a, N =
315, for TP and TN, N = 303), validated the models with two independent data sets (N = 147), and compared the 
model performances with several DL, machine learning, and empirical algorithms. The results indicated that the 
MDL models adequately estimated Chl-a (mean absolute error (MAE) = 32.57%, Bias = 10.61%), TP (MAE =
42.58%, Bias = − 2.82%), and TN (MAE = 35.05%, Bias = 13.66%), and outperformed several other candidate 
algorithms, namely the progressively decreasing deep neural network (DNN), a DNN with trainable parameters 
similar to MDL but without splitting input features, the eXtreme Gradient Boosting, the support vector regression, 
the NASA Ocean Color two-band and three-band ratio algorithms, and another empirical algorithm of Landsat 
data in clear lakes. Using the MDL models, we reconstructed the historical spatiotemporal patterns of Chl-a, TP, 
and TN in Lake Simcoe since 1984, and investigated the effects of two water quality improvement programs. In 
addition, the physical mechanism and interpretability of the MDL models were explored by quantifying the 
contribution of each feature to the model outputs. The framework proposed in this study provides a practical 
method for long-term Chl-a, TP, and TN estimation at the regional scale.   

1. Introduction 

Water quality monitoring is key to maintaining water security. 
Traditional water quality monitoring methods mainly rely on in-situ 
measurements, sample collection, and lab analyses. These methods are 
time-consuming and labor-intensive (Bierman et al., 2011). Besides, 
measurements at the sampling point scale are also considered insuffi-
cient to represent the spatiotemporal characteristics of water quality in 
the whole water surface (Chawla et al., 2020). Remote sensing has long 
been recognized as a potential supplement to the traditional methods 
(Palmer et al., 2015) because it supports quick-access and cost-effective 
water quality monitoring at extensive spatiotemporal scales. As early as 

the 1970s, remote sensing has been used to estimate the concentration of 
suspended solids (SS) in inland waters (Holyer, 1978; Ritchie et al., 
1976). Over the past 40 years, the developments of sensors, image 
correction technology, and retrieval algorithms have contributed to 
substantial progress in remote sensing of water quality (Matthews, 2011; 
Sagan et al., 2020). A large amount of research towards making better 
use of images, more diverse water quality parameter (WQP) retrieval, 
and more robust and generalized algorithm development was reported 
progressively. 

The Landsat series of satellites provide the longest open-source earth 
observations, and are one of the most focused data sources in water 
quality retrieval (Zhang et al., 2021). Landsat 4 and 5 with Thematic 
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Mapper (TM) and Landsat 7 with Enhanced Thematic Mapper Plus 
(ETM+ ) were launched in the 1980s and 1990s successively. Since then 
Landsat has provided multispectral data with six spectral bands 
(450–2350 nm) with a spatial resolution of 30 m and a 16-day repeat 
cycle. A series of studies on water quality retrieval using TM and ETM+

data were conducted (Odermatt et al., 2012; Xiong et al., 2020). Griffin 
et al., (2018) developed empirical models using TM and ETM+ surface 
reflectance (SR) and chromophoric dissolved organic matter (CDOM) 
data derived from discharge-constituent regression-based models for 
CDOM and dissolved organic carbon estimation in major Arctic rivers. 
Setiawan et al., (2019) estimated the Secchi disk depth (SDD) of Lake 
Maninjau (Indonesia) using an empirical model developed with TM and 
ETM+ data between 1987 and 2018. The Landsat 8 launched in 2013 is 
equipped with a 12-bit push-broom sensor Operational Land Imager 
(OLI). Compared to the previous 8-bit whisk-broom TM/ETM+, OLI 
adds Band 1 (435–451 nm) at deep blue and violet wavelengths and 
significantly improves the signal to noise ratio (SNR) (Mancino et al., 
2020), which makes OLI appropriate for application to inland waters 
(Pahlevan et al., 2017). It is worth to mention that the Landsat 9 
launched in September 2021 and continues the legacy of long-term earth 
observation. The 14-bit OLI-2 onboard Landsat 9 is expected to provide 
improved SNR for darker targets such as coastal and inland waters. The 
combined Landsat 8/9 constellation is able to reduce the repeat cycle to 
eight days (Masek et al., 2020). To date, extensive research on water 
quality retrieval by OLI was conducted (Page et al., 2019; Pahlevan 
et al., 2017, 2014; Sagan et al., 2020). However, there exist substantial 
differences in design between OLI and TM/ETM+ (Mancino et al., 
2020). These differences challenge the generation of spatiotemporal 
continuous water quality retrieval. To produce internally consistent 
Landsat remote sensing reflectance (Rrs) for aquatic application, Pahle-
van et al., (2018) implemented a physics-based atmospheric correction 
method of TM and ETM+ data. Although this method dramatically im-
proves the consistency between the sensors with the application of 
system calibration gains and provides a practical way to the long-term 
water quality retrieval using Landsat archive, large variability in the 
performance was still found (Vanhellemont, 2019). As being data- 
driven, machine learning (ML) models were expected to be able to 
learn the sensor differences with data covering these differences, which 
might be an alternative solution. 

Chlorophyll-a (Chl-a) is one of the most relevant parameters in water 
quality retrieval because it quantitatively indicates the state of eutro-
phication and aids the evaluation of health risks of aquatic ecosystems 
(Hunter et al., 2009). At present, Chl-a estimation employs two broad 
categories of methods, i.e., analytical and empirical methods (Sagan 
et al., 2020). Analytical methods derive inherent optical properties 
(IOPs) such as absorption and backscattering coefficients from Rrs and 
then estimate Chl-a by the IOPs (Pahlevan et al., 2020). The funda-
mental light-water interactions enhance model generalization of the 
analytical methods, but also require detailed measurements and com-
plex analyses of spectral information. Empirical methods estimate Chl-a 
directly from Rrs based on: 1) the blue-green (O’Reilly et al., 1998) or 
near-infrared (NIR)-red (Gons, 1999) band ratios; 2) the spectral shape 
delineated by slope or peak reflectance/absorption differences (Mat-
thews and Odermatt, 2015); 3) the optical water types classified by 
clustering spectra (Spyrakos et al., 2018) or linking spectra to concen-
trations of water quality constituents (Uudeberg et al., 2019). These 
methods have been successfully applied to Chl-a estimation in the open 
ocean and inland and coastal waters at the regional or even global scale 
(Liu et al., 2020; Neil et al., 2019). In recent years, ML is more and more 
used for Chl-a retrieval, because it not only improves the retrieval ac-
curacy but also reduces the uncertainty due to complex physical pro-
cesses (Cao et al., 2020; Kwiatkowska and Fargion, 2003; O’Reilly and 
Werdell, 2019; Pahlevan et al., 2020). Nitrogen (N) and phosphorus (P) 
commonly co-limit primary productivity in lakes. Therefore, total 
phosphorous (TP) and total nitrogen (TN) are important factors in the 
initiation, propagation, and maintenance of harmful algal blooms (Paerl 

and Otten, 2013). However, TP and TN are judged as non-optically 
active, and hence research on their retrievals is limited (Sagan et al., 
2020; Xiong et al., 2020). In the existing research, TP and TN are mainly 
retrieved indirectly by their correlations with optically active constitu-
ents (OACs) (e.g., Chl-a and SDD) (Lu et al., 2020; Song et al., 2012). The 
application of ML enhances the ability to capture the potential rela-
tionship among OACs, non-OACs, and Rrs, and is expected to promote 
non-OAC retrieval by saving the efforts on prior OAC retrieval. Chang 
et al., (2013) mapped the spatiotemporal distribution of TP in Tampa 
Bay with Rrs derived from Moderate Resolution Imaging Spectroradi-
ometer (MODIS) data and a suite of genetic programming models. Wang 
et al., (2018) developed a back-propagation neural network with both 
satellite-derived sea surface salinity and Rrs generated from the Geo-
stationary Ocean Color Imager data and estimated TP and TN of the 
coastal regions of the East China Sea. Guo et al., (2021a) compared the 
performances of several ML algorithms for TP and TN retrievals and 
estimated TP and TN of a small urban lake in northern China using the 
optimal models. In summary, ML is not only progressively applied to 
Chl-a retrieval, but also contributes to TP and TN retrievals. Meanwhile, 
Chl-a, TP, and TN are usually highly cross-correlated, but there are few 
studies on the simultaneous retrieval of them and attempting to effec-
tively separate their estimates. 

As part and an improvement of traditional ML, deep learning (DL) 
focuses on large-size and deep neural networks (DNN), which has 
attracted wide attention in recent years (Ma et al., 2019; Reichstein 
et al., 2019). Based on multi-layer learning (Urban et al., 2016), DL was 
proved to outperform traditional ML models with substantial improve-
ment in capturing the potential association between environmental 
variables and remote sensing images (Yuan et al., 2020; Zhu et al., 
2017). Peterson et al., (2020) presented the robustness of the progres-
sively decreasing DNN (pDNN) for estimating multiple WQPs with 
harmonized Landsat 8 and Sentinel-2 data in both fluvial and reservoir 
waters. Cao et al., (2019) evaluated the bandwidth effects of common 
high spatial resolution satellite sensors on optical properties of inland 
waters using DNN and several other methods. Pu et al., (2019) config-
ured a convolutional neural network (CNN) termed AlexNet to fit the 
relationship between Landsat 8 images and water quality levels, and 
found that CNN improved both the accuracy and coverage of inland lake 
monitoring. These studies indicate the strengths of DL for remote 
sensing retrieval of WQPs (especially non-OACs) in inland waters. 
Inspired by the fact that humans learn and process complex information 
through multiple senses (e.g., visual, auditory, and kinesthetic), Ngiam 
et al., (2011) proposed the multimodal DL (MDL). MDL first uses mul-
tiple independent models to learn different kinds of features, then fuses 
the learning results and inputs them into a new independent model for 
the final prediction (Ramachandram and Taylor, 2017). MDL has been 
widely used in human activity (e.g. action, gesture, and emotion) 
recognition, medical applications (e.g. medical image interpretation and 
computer-aided diagnosis), and autonomous driving (Ramachandram 
and Taylor, 2017). Recently, MDL has also attracted great interests in 
remote sensing applications, including imagery classification (Hong 
et al., 2021), crop yield prediction (Maimaitijiang et al., 2020), semantic 
labeling (Audebert et al., 2018), and image segmentation (Suel et al., 
2021). However, MDL is rarely applied to remote sensing retrieval of 
WQPs. 

In this study, we intended to develop and validate MDL models for 
long-term Chl-a, TP, and TN estimation with atmospherically corrected 
Landsat Rrs data. More specifically, we first corrected Landsat raw im-
ages to Rrs data set since 1984 and extracted four visible and NIR bands 
and 20 derived remote sensing indices (RSIs) as model input features. 
Then, the MDL models were trained and rigorously validated using the 
matchups of the pre-screened features and Chl-a, TP, and TN measure-
ments of Lake Simcoe, Canada. Strengths and limitations of the MDL 
models in mapping long-term water quality patterns were also investi-
gated. Finally, we quantified and discussed the contribution of each 
feature to the estimation of Chl-a, TP, and TN, in an attempt to explore 
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the physical mechanism and interpretability of the MDL models. 

2. Materials and methods 

2.1. Study site 

Lake Simcoe was selected as the study site because it provides long- 
term and systematic water quality monitoring data. Lake Simcoe is 
located in southern Ontario, Canada, bordering on Simcoe County, 
Durham Region, and York Region. Lake Simcoe covers 722 km2 and is 
fed by 35 major streams and rivers (Fig. 1). Lake Simcoe supplies 
drinking water, agricultural water, and diverse recreation opportunities 
to more than 450,000 people in the watershed and Ontario, including 
parts of the Oak Ridges Moraine and the Greenbelt. Over the years, 
climate change and anthropogenic activities like urban development, 
agriculture, and recreation have significantly affected the water quality 
of Lake Simcoe (Crossman et al., 2016). To rectify these problems, the 
Canadian government and related organizations implemented a series of 
environmental improvement programs, for example, the Lake Simcoe 
Environmental Management Strategy (LSEMS) program implemented in 
1990 and the Lake Simcoe Protection Plan (LSPP) implemented in 2008. 
The implementation of these programs significantly improved the water 
quality of Lake Simcoe. 

2.2. Satellite data and processing 

To reconstruct the long-term water quality patterns in Lake Simcoe 
with high spatial resolution, Landsat raw images from 1982 to 2020 
were selected as the satellite data source in this study. The image 
screening followed several criteria: 1) cloud cover was constrained to ≤
70%; 2) cloud-covered area visually estimated from Landsat look natural 
color images was < 30% of the lake area; 3) images in winter (December 
to February) were excluded because the lake was frozen; 4) images of 
frozen lake in other months were further excluded by visual examina-
tion. After applying these criteria, a total of 225 qualified Level-1 images 
were downloaded from the United States Geological Survey portal 

(https://earthexplorer.usgs.gov). Note that except for the observation 
gap of Landsat 5 and 8 between 5 May 2012 and 11 April 2013, 74 
Landsat 7 images after 31 May 2003 (the scan line corrector failed) were 
only used for training and validating the models, but not for water 
quality mapping to avoid the impacts of data gaps. No eligible Landsat 4 
TM image was screened out. The Level-2 surface reflectance (SR) of TM, 
ETM+, and OLI is atmospherically corrected by the Landsat Ecosystem 
Disturbance Adaptive Processing System (LEDAPS) (Schmidt et al., 
2013) and the Landsat 8 Collection 1 Land Surface Reflectance Code 
(LaSRC) (Vermote et al., 2016). Since both methods are developed for 
land surface applications, the SR data may have uncertainties when 
applied over water (Ilori et al., 2019). Therefore, the Level-1 top-of-at-
mosphere (TOA) data was used rather than the Level-2 SR data in this 
study. 

The TOA data was atmospherically corrected to Rrs using the dark 
spectrum fitting (DSF) and exponential extrapolation (EXP) algorithms 
integrated into ACOLITE (version 20210114.0) (Vanhellemont, 2019). 
During the atmospheric correction, the Rayleigh corrected reflectance 
(ρrc) was also exported. Given the low SNR of TM and ETM+ short-wave 
infrared (SWIR) bands, the NIR and SWIR bands rather than the default 
of two SWIR bands were used for the EXP algorithm. We compared the 
percentages of invalid pixels (negative values) produced by EXP and DSF 
algorithms at visible and NIR bands (Fig. A.1). The results showed that 
DSF had a lower invalid pixel percentage than EXP. In addition, we 
trained and validated the MDL models with the outputs of the three 
atmospheric correction methods and compared the model performances 
(Fig. A.2–A.4). The results also indicated that the models performed 
better with DSF outputs. Therefore, DSF was selected as the atmospheric 
correction method in this study. The closest SWIR bands to 1,600 nm 
were used for removing cloud and other non-water pixels with a 
threshold of 0.0215. To avoid the severe land adjacency effect, a 300 m 
buffer inward the water boundary was removed for water body (Wang 
et al., 2020). 

RSIs are proved to provide better sensitivity than individual spectral 
bands (Gao et al., 2020). To enable the models to learn more useful 
information and achieve more accurate water quality retrieval, we 

Fig. 1. Locations of Lake Simcoe (a) and the water quality monitoring stations (b). The base map used in (b) was derived from the true color composite image (Band 
4, 3, and 2) ingested by Sentinel-2 on 14 August 2020. 
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calculated 20 RSIs (Table A.1) based on the Rrs of visible and NIR bands 
to supplement the four individual spectral bands. The selection of RSIs 
referred to the spectral characteristics of Lake Simcoe presented by the 
matched-up data set used in this study (Fig. 2). In Lake Simcoe, the 
reflectance peaks appeared at the green band and close reflectance 
appeared at the blue band. The red and NIR bands showed relatively 
strong absorption. We speculated that the effects of phytoplankton, 
CDOM, and non-algal particles on non-water absorption were balanced 
in Lake Simcoe (Spyrakos et al., 2018). 

All features were split into three categories based on the number of 
bands participating in the feature calculation, namely F1-band, F2-band, 
and F3-band. Then, we calculated the Pearson correlation coefficients (r) 
between 24 features and each WQP, respectively. Some features 
belonged to vegetation indices, they might confuse the models due to 
their weak correlations with WQPs. Moreover, the more features, the 
more samples were needed for model training. Therefore, we further 
screened the features with high contributions to the prediction by 
setting a threshold for |r| . The optimal threshold was determined by the 
model performances with different thresholds within [0.1, 0.9]. The 
features with |r| being beyond the optimal threshold were excluded. The 
remaining features (Table 1) were used to match up with the water 
quality measurements for model development and validation. 

2.3. Water quality measurements 

We used three different ground truth data sets of Chl-a, TP, and TN to 
train and validate the MDL models, i.e., in-situ measurements obtained 
from the Lake Simcoe lake monitoring program (LSLMP) (for Chl-a, N =
315, for TP and TN, N = 303), the Lake Simcoe Clean-up Fund (LSCUF) 
(N = 89), and the Lake Simcoe Region Conservation Authority (LSRCA) 
(N = 58). 

LSLMP is conducted by the Ministry of the Environment, Conserva-
tion and Parks, Ontario, Canada, and provides biweekly measurements 
of chemical and physical WQPs in Lake Simcoe. The LSLMP data from 
2013 to 2019 was downloaded from https://data.ontario.ca. The LSLMP 
data and satellite data were matched-up to develop MDL models for 
estimating Chl-a, TP, and TN. To ensure the high quality of the in-situ 
and concurrent satellite data, Chl-a, TP, and TN measurements were 
selected with the time interval between the field measurement and 
satellite sensing being constrained to < 6 h (Cao et al., 2020). The co-
efficient of variation (CV) was used to detect the spatial variability of 
matched pixels in each spectral band (Zibordi et al., 2009). If the CV of 
the 3 × 3 window around the matched pixel was greater than 20%, the 
pixel was excluded. 

The LSCUF and LSRCA measurements were used as independent data 
sets to further validate the model generalization. LSCUF is part of the 

Government of Canada’s Comprehensive Approach to Clean Water and 
is managed by the Environment Canada. LSCUF shares the same sam-
pling locations with LSLMP and provides Chl-a, TP, and TN measure-
ments from 2007 to 2012 (https://open.canada.ca). The LSRCA is 
continually involved in various kinds of monitoring activities including 
water quality monitoring at 10 lake water quality stations in Lake 
Simcoe. The Chl-a, TP, and TN measurements of LSRCA from 2010 to 
2019 were obtained from https://data.lsrca.on.ca. The distributions of 
the three ground truth data sets and corresponding Rrs data used in this 
study were shown in Fig. A.5 and Fig. A.6. Note that the negative Rrs was 
masked as it might confuse the models. 

Using the in-situ measurements of LSLMP, LSCUF, and LSRCA, we 
analyzed the correlations of OACs Chl-a and SDD with non-OACs TP and 
TN (Fig. 3). The results indicated that Chl-a and SDD showed good 
positive and negative correlations with TP and TN, which provided a 
basis for indirect estimation of TP and TN by remote sensing images in 
Lake Simcoe. 

2.4. Model development and evaluation 

In this study, we attempted to train a DL model that could adequately 
fit the relationship between the features generated from satellite data 
and the target WQP, so as to implement water quality retrieval. Here, we 
employed a simple neural network (Fig. 4a) to illustrate how this model 
worked. For each sample, the outputs y (i.e., [ y1 y2 y3 ]) of the input 
layer could be computed by Eq. (1): 

y = σ
(
wT

1 x + b1
)

(1)  

where x is the input feature vectors [ x1 x2 ] , representing the Rrs of the 
visible and NIR bands and screened RSIs. w1 and b1 are the weight vector 
⎡

⎢
⎢
⎢
⎣

w(1)
11 w(1)

21

w(1)
12 w(1)

22

w(1)
13 w(1)

23

⎤

⎥
⎥
⎥
⎦

and bias vector 
[
b(1) b(1) b(1)

]
applied to the in-

terconnections between the neurons in the input layer and hidden layer. 
σ is the activation function, which converts the linear transformation 
between the two layers into a nonlinear transformation and thus allows 
nonlinear fitting. 

The output ŷ of the hidden layer, representing the estimated WQP, 
could be computed by Eq. (2): 

ŷ = wT
2 y + b2 (2)  

where w2 and b2 are the weight vector 
[

w(2)
11 w(2)

21 w(2)
31

]
and bias 

vector 
[
b(2)

]
applied to the interconnections between the neurons in the 

hidden layer and output layer. The activation function was not applied 
in the final WQP prediction. 

The model can be determined by solving for w and b. To better fit the 
relationship between the input features and WQPs, we first designed and 
constructed more complex model structures, and then optimized w and b 
by defining the loss function and using the gradient descent. The 
detailed steps of model construction and hyperparameter optimization 
were as follows: 

For each WQP, we constructed an MDL model integrated by four sub 
neural networks (sNN) (Fig. 4b). In nature, F1-band, F2-band, and F3-band 
belonged to spectral information, but the number of sources providing 
information in each feature category was different, resulting in different 
feature sensitivity and noises. If all three categories of features were 
input into the fully connected neural network at the same time, the 
interaction of noises might either increase the difficulty of model 
training (underfitting) or make the model learn excessive noises (over-
fitting). Therefore, we allocated an sNN for the F1-band (sNN1), F2-band 
(sNN2), and F3-band (sNN3), respectively, considering the three sNNs 
could effectively balance the useful information against noises during 

Fig. 2. The spectral characteristics of Lake Simcoe presented by the matched- 
up data set used in this study. The spectra were obtained from the DSF algo-
rithm integrated into ACOLITE (version 20210114.0). 
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learning. The outputs of the sNNs were essentially nonlinear mapping of 
the input features after weighted summation by hidden layers. Then 
these outputs were concatenated and input into the fourth sNN (sNN4) 
for the final WQP prediction. sNN1 and sNN3 were set with two hidden 
layers, while sNN2 and sNN4 were set with three hidden layers. The 
numbers of neurons in the input layers of sNN1, sNN2, and sNN3 were 
determined by the feature number of each feature category. The 
numbers of neurons in the output layer of the sNNs needed to be spec-
ified according to model performance. In this study, they were set to the 

same as the input layers for convenience. Since the input of sNN4 was 
the outputs of the other sNNs and the output of sNN4 was the target 
WQP, the numbers of neurons in the input layer and output layer of 
sNN4 were set to ten and one, respectively. The numbers of neurons in 
the hidden layer of the four sNNs were different and were specified 
according to the model performance during training. The numbers of 
neurons were set as few as possible to avoid overfitting. 

The Exponential Linear Unit (ELU) was used as the activation func-
tion. In model optimization, the mean squared error (MSE) was used as 

Table 1 
List of the indices, formulas, and references of the input features.  

Indices Features Formulas References 

F1-band F1–4 Individual spectral bands B, G, R, NIR — 
F2-band F6 Ratio of red to blue R/B (Hewson et al., 2001) 

F8 Ratio of red to green R/G (Gamon and Surfus, 1999) 
F9 Ratio of NIR to green NIR/G (Gitelson et al., 2002) 
F12 Normalized difference green and red index (G – R)/(G + R) (Ahamed et al., 2011) 
F14 Blue NDVI (NIR – B)/(NIR + B) (Hancock and Dougherty, 2007) 
F15 Normalized difference green and NIR index (G – NIR)/(G + NIR) (Le Maire et al., 2004) 

F3-band F16 Chlorophyll vegetation index NIR × R/G (Hunt et al., 2011) 
F17 Green-blue NDVI (NIR – G + B)/(NIR + G + B) (Wang et al., 2007) 
F19 Red-blue NDVI (NIR – B + R)/(NIR + B + R) (Wang et al., 2007) 
F21 Shape Index (2 × R – G – B)/(G – B) (Escadafal. 1994) 
F24 Visible atmospherically resistant index (G – R)/(G + R + B) (Gitelson et al., 2003)  

Fig. 3. Correlations of OACs Chl-a and SDD with non-OACs TP and TN in Lake Simcoe. The determination coefficient (R2) and p-value (p) were used to evaluate the 
goodness of fit and the statistical significance. 
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the loss function: 

L(w, b) =
1
N

∑N

i=1
(ŷi − yi)

2 (3)  

where yi and ̂yi are the measured and estimated WQP, N is the number of 
samples. 

The stochastic gradient descent (SGD) was used for hyperparameter 
update in model training because SGD only uses one random sample to 
calculate the gradient in each update instead of all samples. This mode 
not only speeds up the computation, but the instability of the gradient 
also helps the model escape the saddle point to find a better solution 
(Bottou, 2012). The w and b updates using SGD can be formulated as 
follows: 

w = w − η ∂L(w, b)
∂w

(4)  

b = b − η ∂L(w, b)
∂b

(5)  

where η is the learning rate, determining the step size at each iteration 
while moving towards the minimum of the L(w, b) . 

In addition to MDL, we also constructed four other candidate DL and 
ML models, including the pDNN (Section 1, Fig. 4c), a DNN with a 
similar number of trainable parameters but no sNN (sDNN), the eXtreme 
Gradient Boosting (XGBoost) (Chen and Guestrin, 2016), and the sup-
port vector regression (SVR) (Cortes and Vapnik, 1995) for comparison 
purpose. XGBoost and SVR, representing two different kinds of ML al-
gorithms, have been frequently used in water quality retrieval over years 
(Cao et al., 2020; Guo et al., 2021b). In this study, MDL, pDNN, and 
sDNN models were implemented by PyTorch (version 1.7.0) (Paszke 
et al., 2019) in Python. XGBoost and SVR models were implemented 
using the xgboost (version 1.1.1) and scikit-learn (version 0.20.4) li-
braries in Python, respectively. To enable the models to learn enough 
information and avoid overfitting, the “train_test_split” function in 

scikit-learn was used to randomly split the LSLMP data set into 70% 
training set and 30% test set before model training. In the training of 
MDL, pDNN, and sDNN models, dropout was used to reduce overfitting 
(Srivastava et al., 2014). In addition, the losses on the training set and 
the test set were strictly monitored to ensure a balanced model perfor-
mance. In the training of XGBoost and SVR models, the grid-search 
technique was used to optimize the hyperparameters. To further avoid 
overfitting, a 5-fold cross-validation was used to ensure that the training 
set was randomly distributed in different segments (Fan et al., 2017). 
The hyperparameters and the main codes (taking Chl-a as an example) of 
the DL and ML models developed in this study were listed in Table A.2 
and Table A.3. 

We also included the NASA Ocean Color two-band (OC2) and three- 
band (OC3) ratio algorithms (O’Reilly and Werdell, 2019) and another 
empirical algorithm of Landsat 5 TM in clear lakes (Giardino et al., 
2001) to verify the performance of the MDL model for Chl-a estimation. 
Both OC2 and OC3 were based on the ratio of blue to green Rrs: 

Chl-a = 10a+bX+cX2+dX3+eX4 (6) 

In OC2, 

X = log10

(
Rrs(490)
Rrs(560)

)

(7) 

In OC3, 

X = log10

(
Rrs(443). > Rrs(489)

Rrs(560)

)

(8)  

where the greater of Rrs(443) and Rrs(489) is used. Note that the coastal 
aerosol band (433–453 nm) of OLI was only used for OC3 and not used 
for other model training because of its absence on TM and ETM+ . 

The algorithm proposed by Giardino et al., (2001) (hereafter termed 
as MLR for brevity) estimates Chl-a by relating Rrs at 490 nm and 560 nm 
to in-situ measured Chl-a with multiple linear regression: 

Fig. 4. Structures of a simple neural network (a) illustrating how the input features (i.e., Rrs of the visible and NIR bands and screened RSIs) relate to the WQPs, the 
MDL model (b), and the pDNN model (c). In (b− c), green, blue, orange, and yellow denote the sNN1, sNN2, sNN3, and sNN4 of the MDL model, respectively. Note 
that we labeled the neuron numbers of the Chl-a model to display the model structure. The neuron numbers of the Chl-a, TP, and TN models were slightly different. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Chl-a = a × Rrs(490) − b × Rrs(560) − c (9) 

The OC2, OC3, and MLR models were trained and validated using the 
same data sets as other ML and DL models. To avoid possible effects of 
the data set splitting, model training was repeated 100 times for each 
algorithm, re-splitting the data set in every run (Tavares et al., 2021). 
The bands used in the original algorithms were converted to the closest 
comparable TM, ETM+, and OLI bands. 

Two widely used log-transformed metrics (Seegers et al., 2018; 
Smith et al., 2021) were calculated for evaluating the model perfor-
mances on the LSLMP test set and two independent data sets (i.e., LSCUF 
and LSRCA), namely the mean absolute error (MAE) and Bias. They can 
be formulated as follows: 

MAE = 100 ×

⎧
⎪⎨

⎪⎩
10

[∑N

i=1
|log10 (̂yi/yi)|

N

]

− 1

⎫
⎪⎬

⎪⎭
(10)  

Bias = 100 ×

⎧
⎪⎨

⎪⎩
10

[∑N

i=1
log10 (̂yi/yi)

N

]

− 1

⎫
⎪⎬

⎪⎭
(11)  

where N is the number of the matched-up pairs, ŷi and yi are the esti-
mated and measured WQP, respectively. For both metrics, values closer 
to zero indicate better model performance. 

3. Results 

3.1. Preliminary feature screening 

Before model training, we calculated r between the WQPs and the 
features, and preliminarily screened the features using a threshold 
determined by model performances, to avoid excessive redundant noises 
being input into the models and improve the model efficiency (Fig. 5, 
Table A.4). 

F1-band (F1–4) showed positive correlations with the three WQPs, 
with r ≥ 0.4. Chl-a had the strongest correlation with F2 (green band), 
with r reaching 0.61. The correlation between Chl-a and F1 (blue band) 
was close to that between Chl-a and F2 (r = 0.52). The correlations 
between Chl-a and F4 (NIR band) and F3 (red band) were close, with r of 
0.49 and 0.40, respectively. Like Chl-a, TP also had the strongest cor-
relation with F2, with r reaching 0.55. The following was the correlation 
between TP and F3 (r = 0.50). The correlations between TP and F1 and 

F4 were the same, with both r reaching 0.47. TN had the strongest 
correlation with F3, with r of 0.57. The correlations between TN and F4 
and F2 were close, with r reaching 0.55 and 0.52, respectively. The 
correlation between TN and F1 was slightly weaker than those between 
TN and F2, F3, and F4 (r = 0.46). These results indicated the potential of 
using the spectral bands of atmospherically corrected Landsat Rrs to 
estimate Chl-a, TP, and TN. 

In addition to the individual spectral bands, we also calculated 20 
common RSIs (Table A.1) so that the models could learn more effective 
information. F2-band (F5–F15) showed relatively weak correlations with 
Chl-a, TP, and TN, with r fluctuating between –0.31–0.35, –0.46–0.47, 
and –0.43–0.42, respectively. Chl-a had the strongest correlation with 
F14 (r = 0.35). The correlation between Chl-a and F8 was the weakest, 
with r of –0.17. TP and TN showed strong positive correlations with F6, 
F14, and F9, but strong negative correlations with F8, F12, and F15. For 
F3-band (F16–24), three WQPs showed negative correlations with F22 
and F24, and positive correlations with the other features. Chl-a, TP, and 
TN had the strongest correlations with F16, with r of 0.51, 0.56, and 
0.56, respectively, while had the weakest correlations with F23, F18, 
and F20, with r of 0.05, 0.17, and 0.13, respectively. Except for F16, r of 
Chl-a and other features fluctuated in a small range of –0.29–0.35. 
Except for F16, F17, F21, and F24, r of TP and TN and other features 
fluctuated in a small range of –0.24–0.28. 

Fig. 6 showed that the MDL models performed best with the 
threshold of 0.3. The MAE of the Chl-a, TP, and TN models was 33.14%, 

Fig. 5. The r between the WQPs and the features. F1–4, F5–15, and F16–24 are the F1-band, F2-band, and F3-band, respectively.  

Fig. 6. The performances of the MDL models with features screened by 
different Pearson correlation coefficient (r) thresholds. 
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43.26%, and 35.40%, respectively. The Bias of the Chl-a, TP, and TN 
models was 10.85%, − 3.20%, and 14.37%, respectively. Therefore, 0.3 
was set as the threshold for preliminary screening of the features. 

In summary, although the correlations of F2-band and F3-band with 
WQPs were not as strong as those of F1-band with WQPs, we anticipated 
that F2-band and F3-band could supplement the individual spectral bands. 
We also observed differences in the correlations of three WQPs with 
some features and in the screened features with the same threshold. 
These differences might make it possible to effectively separate the es-
timates of three WQPs. The features with |r| < 0.3 were excluded before 
model development. 

3.2. Model performances 

To better explore the model training and test processes, especially 
the overfitting, here, we separately presented the model performances 
on the training set and the test set (Fig. 7). In general, the models of three 
WQPs performed well on both training set and test set. We noted that the 
performances of the Chl-a, TP, and TN models on the test set decreased 
in different degrees compared to those on the training set, but the overall 
performances maintained a good balance. The results suggested that 
slight overfitting existed in the models, but it was controlled at a good 
level. In this study, the model evaluation scores on the test set were 
chosen to represent the model performances in application. Chl-a be-
longs to OAC, thus the Chl-a model was expected to perform better than 
the models of non-OACs (i.e., TP and TN). However, the results showed 
that the model performances of TP (MAE = 42.58%, Bias = − 2.82%) and 
TN (MAE = 35.05%, Bias = 13.66%) were quite close to that of Chl-a 
(MAE = 32.57%, Bias = 10.61%). Although there existed slight over-
fitting, the models developed in this study adequately estimated Chl-a, 
TP, and TN. 

In addition to the LSLMP test set, we further used the LSCUF and 
LSRCA measurements as independent data sets to validate the model 
generalization (Fig. 8). The model performances on the independent 
data sets were maintained with high accuracy, although different de-
grees of accuracy loss was observed on the models of all WQPs. The 
validation MAE and Bias of the Chl-a model were 27.87% and 23.73%, 
respectively. We speculated that the narrower range of Chl-a concen-
tration in the LSCUF and LSRCA data sets led to the MAE improvement. 
Although TP model showed a clear accuracy loss and the underestima-
tion on the LSLMP test set even changed to an overestimation on the 
LSCUF and LSRCA data sets, the overall accuracy remained at 52.10% 
and 22.24%, respectively. The validation MAE and Bias of the TN model 
remained at 47.83% and 18.61%, with decreases of 36.46% and 36.24%, 
respectively. Through the validation of the LSLMP test set and two in-
dependent data sets, the MDL models developed in this study were 
demonstrated to be capable to adequately estimate long-term Chl-a, TP, 
and TN of Lake Simcoe with the Landsat Rrs data. 

Moreover, we trained and validated a set of other candidate models 
using the LSLMP data set to further investigate the strengths of the MDL 
models. Fig. 9 showed the performances of the pDNN, sDNN, XGBoost, 
SVR, OC2, OC3, and MLR models on the LSLMP test set. As expected, the 
evaluation results indicated that the MDL models outperformed all other 
models for all three WQPs. For Chl-a, the MAE and Bias were improved 
by 23.88% and 53.60% by the MDL model compared to those of the 
optimal candidate model (pDNN). The performance of the pDNN (MAE 
= 42.79%, Bias = 22.87%) for Chl-a estimation was proved to be better 
than the sDNN (MAE = 53.76%, Bias = 35.12%) and other two tradi-
tional ML models, which was consistent with the research results in 
(Peterson et al., 2020). Although OC2, OC3, and MLR were developed 
for Chl-a estimation in clear Case-I waters and considered to be appli-
cable for Lake Simcoe (with Chl-a < 10 μg L− 1), the results showed that 

Fig. 7. Performances of the MDL models on both training set (a–c) and test set (d–f).  
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the MDL model performed better than all of them. More specifically, 
OC3 performed slightly worse than pDNN (MAE = 42.79%, Bias =
22.87%), with MAE and Bias of 48.86% and 31.89%, respectively. The 
performance of OC2 was inferior to sDNN (MAE = 53.76%, Bias =
35.12%) and XGBoost (MAE = 60.59%, Bias = 39.36%), with MAE and 
Bias of 89.61% and 47.82%, respectively. The following was the MLR 
algorithm, of which a high scatter was also observed, with MAE and Bias 
of 96.98% and 54.44%, respectively. SVR performed the worst among 
all candidate algorithms for Chl-a estimation, with MAE and Bias of 
117.89% and 58.99%, respectively. The MAE and Bias of the MDL model 
for TP estimation were 51.80% and 46.79% better than the second-best 
model (sDNN). The performance of TN estimation was also improved by 
the MDL model, with MAE and Bias being increased at least 55.40% and 
49.87%, respectively. These results suggested that the MDL models had 
strengths in both OAC and non-OAC retrieval. We noted that XGBoost 
also showed good potential, especially for the estimation of TP (MAE =
115.58%, Bias = 19.81%) and TN (MAE = 78.58%, Bias = 27.25%). This 
might benefit from that XGBoost not only adds a regularization to the 
objective function to control the overfitting but also uses both the first 
and second derivatives for more accurate and efficient loss calculation 
(Cao et al., 2020). 

3.3. Spatiotemporal variation of water quality 

The Canadian government began to implement LSEMS in 1990 and 
LSPP in 2009, aiming to improve the water quality and protect the 
ecological health of Lake Simcoe. We reconstructed the spatiotemporal 
distributions of water quality in Lake Simcoe since 1984 with the 
Landsat Rrs data and the MDL models developed in this study. Here, to 
analyze the water quality improvement effects of LSEMS and LSPP in 
Lake Simcoe, we mapped the average spatial distributions of Chl-a, TP, 
and TN of Lake Simcoe during 1984–1989, 1990–2008, and 2009–2020, 
respectively (Fig. 10). The annual water quality in Lake Simcoe and its 
different areas from 1984 to 2020 was also calculated. In addition, the 
spatial averages of three WQPs from 1984 to 2020 were mapped to 
analyze the long-term spatial distribution characteristics of water 
quality in Lake Simcoe. Moreover, the spatial distributions of water 
quality on two typical dates were compared with true-color composite 
(TCC) images to investigate the spatial distribution characteristics of 
three WQPs. 

3.3.1. Spatial variation 
We compared the water quality variation of Lake Simcoe and its five 

most concerned populated and estuarine intensive areas (i.e. the Cook’s 
Bay (CB), the Kempenfelt Bay (KB), offshore areas in the east, north, and 
west of the lake (hereafter termed as east, north, and west for brevity)). 

The water quality of CB was quantified by the average estimates of C1, 
C6, and C9. The water quality of KB was quantified by the average es-
timates of K38, K39, and K42. The water quality of the north was 
quantified by the average estimates of N31 and N32. The water quality 
of the east and west was represented by the estimates of E50 and K45, 
respectively. The water quality before and after the LSEMS imple-
mentation and after the LSPP implementation were quantified by the 
average estimates of 1984–1989, 1990–2008, and 2009–2020, 
respectively. 

After the LSEMS and LSPP implementation, Chl-a, TP, and TN in Lake 
Simcoe showed decreasing trends, with percentages of 4.27%, 32.85%, 
and 29.52%, respectively. More specifically, after the LSEMS imple-
mentation, Chl-a, TP, and TN decreased by 8.36%, 28.79%, and 25.31%, 
respectively. After the LSPP implementation, Chl-a, TP, and TN further 
decreased by 2.28%, 5.58%, and 4.65%, respectively. 

Chl-a decreased significantly after the LSEMS implementation. 
Especially in the CB, east, north, and KB, Chl-a decreased by 18.92%, 
7.54%, 4.13%, and 2.52%, respectively. Chl-a showed no significant 
change after the LSPP implementation, with an average concentration of 
2.26 ± 0.59 μg L− 1. In some areas of the east, Chl-a even rebounded, 
while in the center of the lake, Chl-a decreased to a certain extent. TP 
decreased significantly after LSEMS and LSPP implementation. Espe-
cially in the KB, west, CB, and north, TP decreased by 21.67%, 15.59%, 
12.54%, and 9.72%, respectively. A significant TP decrease in the area 
extending from CB to the center of the lake was also observed. TP 
decreased slightly in the east, with a percentage of 0.78%. After LSPP 
implementation, TP in the east, KB, CB, and west further decreased by 
17.79%, 14.17%, 11.33%, and 9.59%, respectively. TP also decreased to 
some extent in the center of the lake. TP in the north showed a slight 
rebound, with a percentage of 1.23%. After the LSEMS implementation, 
TN in the west, KB, and north showed significant decreases, with per-
centages of 19.54%, 15.76%, and 12.17%, respectively. Meanwhile, TN 
in the area extending from CB to the center of the lake also showed a 
significant decrease. TN did not decrease significantly in the east and 
even increased to a certain extent in some areas. A certain TN increase 
was also observed in the center of the lake. After the LSPP imple-
mentation, TN showed a significant decrease in the east, with a per-
centage of 16.43%. In the west, KB, and CB, TN further decreased by 
11.33%, 8.09%, and 7.28%, respectively. TN in the north showed a 
slight rebound, with a percentage of 0.73%. In addition, a certain in-
crease of TN was observed in the center of the lake. 

According to the average spatial distributions of water quality from 
1984 to 2020, Chl-a, TP, and TN in the east, CB, west, north, and KB 
were significantly higher than those in other areas. Three populated 
cities (i.e., Keswick, Orillia, and Barrie) are distributed near CB, north, 
and KB. Although the east and west are more sparsely populated, the 

Fig. 8. The performances of the Chl-a (a), TP (b), and TN (c) models on the two independent data sets, namely, the LSCUF (blue) and LSRCA (red). Note that the MAE 
and Bias were the averages of the two data sets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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Fig. 9. The performances of the pDNN (a–c), sDNN (d–f), XGBoost (g–i), SVR (j–l), OC2 (m), OC3 (n), and MLR (o) models on the LSLMP test set.  
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Fig. 10. Mapping of the average spatial distributions of Chl-a, TP, and TN in Lake Simcoe during 1984–1989 (a–c), 1990–2008 (d–f), 2009–2020 (g–i), and 
1984–2020 (j–l). 
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areas are widely covered with farmland. In addition, extensive estuaries 
are distributed in these areas. Therefore, we inferred that these areas 
received a mass of nutrients from urbanization and intensive agricul-
tural activities, which led to algae growing vigorously and even algal 
blooms. 

Fig. 11 showed the TCC images and the corresponding Chl-a, TP, and 
TN estimates on 19 September 1984 and 22 October 2014. Compared 
with the TCC images, we considered that the models adequately esti-
mated Chl-a. Meanwhile, we observed that the spatial distributions of 
the Chl-a, TP, and TN showed high consistency. P and N are the main 
limiting nutrients for algal growth, and P and N are highly homologous 
(Paerl and Otten, 2013), we hence speculated that TP and TN indirectly 
affected the spectral characteristics of water mainly by affecting the 
concentration of Chl-a in Lake Simcoe. Adding RSIs in addition to the 
individual spectral bands to expand the model input features might 

make the models better learn the correlations between TP, TN, and Chl-a 
and the spectral features, and in turn contribute to the retrieval of the 
non-OACs TP and TN. However, the cross-correlation between Chl-a, TP, 
and TN challenged the accurate estimation of any WQP without the 
impacts of other WQPs. Therefore, we further calculated the contribu-
tion of each feature to the model outputs to explain the feasibility for 
effective separation of Chl-a, TP, and TN estimates by the MDL models. 
This content was discussed in detail in Section 4.3. 

3.3.2. Temporal variation 
Fig. 12 illustrated the annual model estimated water quality varia-

tion of Lake Simcoe and its five most concerned areas from 1984 to 
2020. The water quality of the whole lake was the spatial average. 

From 1984 to 2020, Chl-a, TP, and TN of Lake Simcoe showed 
fluctuating downward trends, with percentages of 64.79%, 60.63%, and 

Fig. 11. TCC images (a–b) and the corresponding Chl-a, TP, and TN estimates on 17 September 1984 (c–e) and 22 October 2014 (f–h).  
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36.92%, respectively. Chl-a, TP, and TN decreased significantly from 
1984 to 1988, with percentages of 57.32%, 49.75%, and 36.47%, 
respectively. From 1988, Chl-a, TP, and TN gradually increased and 
reached local peaks of 3.36 μg L− 1, 18.88 μg L− 1, and 0.57 mg L− 1 three 
to four years after the LSEMS implementation. After that, the imple-
mentation effect of the LSEMS appeared. Three WQPs decreased 
significantly and reached local troughs of 1.87 μg L− 1, 12.93 μg L− 1, and 
0.37 mg L− 1 in 1998 (Chl-a, TP) and 1999 (TN), respectively. Chl-a and 
TP increased continuously in 1998 and 1999 and gradually decreased 
from 2000 to 2020, with percentages of 58.74% and 48.59%, respec-
tively. TN showed a significant increasing trend from 1999 to 2008, with 
a percentage of 43.75%. After the LSPP implementation, Chl-a, TP, and 
TN showed significant decreasing trends again, with percentages of 
52.65%, 35.43%, and 28.56%, respectively. 

The water quality variation in the five most concerned areas from 
1984 to 2020 tended to be consistent. Chl-a, TP, and TN of the CB were 
higher than those of other areas in most years. In 1992 after the LSEMS 
implementation, Chl-a, TP, and TN decreased significantly and reached 
the local troughs of 1.68 μg L− 1, 13.35 μg L− 1, and 0.43 mg L− 1 in 1999. 
From 2000 to 2020, Chl-a and TN fluctuated in ranges of 2.70–4.36 μg 
L− 1 and 0.42–0.58 mg L− 1, respectively. TN even showed a slight 
increasing trend, and the LSPP implementation also failed to change this 
trend. Since 2000, TP maintained a decreasing trend, especially after the 
LSPP implementation, with a percentage of 47.93%. 

The Chl-a of KB decreased significantly from 1992 to 2001 after the 
LSEMS implementation, with a percentage of 40.56%. TP and TN 
decreased significantly from 1994 to 2001 after the LSEMS imple-
mentation, with percentages of 37.53% and 18.23%, respectively. From 
2002 to the LSPP implementation, Chl-a, TP, and TN fluctuated in ranges 
of 1.74–3.22 μg L− 1, 16.01–19.77 μg L− 1, and 0.41–0.52 mg L− 1, 
respectively. After the LSPP implementation, Chl-a and TP began to 
decrease significantly, with percentages of 55.56% and 39.94%, 
respectively, while TN increased to a certain extent, with a percentage of 
4.43%. 

Chl-a and TP in the east were higher than those in other areas except 
CB, while TN in the east was close to those in other areas except CB. 
From 1993 to 1999 after the LSEMS implementation, Chl-a and TP 

decreased rapidly, with percentages of 46.28% and 34.26%, respec-
tively. From 2000 to the LSPP implementation, Chl-a and TP fluctuated 
in ranges of 2.54–3.73 μg L− 1 and 18.73–24.11 μg L− 1, respectively. 
After the LSPP implementation, Chl-a and TP decreased significantly, 
with percentages of 36.76% and 29.54%, respectively. TN maintained 
an increase of 24.39% in six years after the LSEMS implementation. 
From 1996, TN began to decrease. But when dropped to 0.31 mg L− 1 in 
1999, TN began to rise to 0.53 mg L− 1 in 2003. Since 2003, TN fluctu-
ated in the range of 0.33–0.59 mg L− 1. Until the LSPP implementation, 
TN showed a slight decrease. 

In the west, although Chl-a and TP increased significantly in the first 
four years after the LSEMS implementation, with percentages of 76.73% 
and 89.26%, respectively, they decreased continuously after the LSEMS 
and LSPP implementation, with percentages of 56.70% and 43.65%, 
respectively. After the LSEMS implementation, TN decreased from 1994 
to 1999, with a percentage of 41.92%. From then to 2005, TN main-
tained an increasing trend with a percentage of 14.77%. Since 2005, 
including the LSPP implementation, TN showed a slight decreasing 
trend, with a percentage of 25.39%. 

The variation of Chl-a, TP, and TN in the north was similar to that in 
the west from 1984 to 2020. After the LSEMS implementation, Chl-a 
decreased significantly from 1993 to 1997, with a percentage of 56.27%. 
From 1998 to 2003, Chl-a increased significantly, with a percentage of 
83.87%. TP decreased significantly from 1993 to 1998 after the LSEMS 
implementation, with a percentage of 61.43%. From 1999 to 2003, TP 
increased significantly by 55.02%. Since 2003, including the imple-
mentation of LSPP, Chl-a and TP showed a decreasing trend, with per-
centages of 39.34% and 29.03%, respectively. After the LSEMS 
implementation, TN decreased significantly from 1994 to 1999, with a 
percentage of 37.25%. From 2000 to 2006, TN increased by 17.56%. 
Since 2006, including the LSPP implementation, TN showed a slight 
decreasing trend, with a percentage of 10.68%. 

4. Discussion 

4.1. Model strengths 

The MDL models proposed in this study were demonstrated to 
perform well on the LSLMP test set and two independent data sets 
(LSCUF and LSRCA) (Section 3.2) for Chl-a, TP, and TN estimation, and 
outperformed several other candidate algorithms i.e., pDNN, sDNN, 
XGBoost, SVR, OC2, OC3, and MLR. As part of ML, DL has been proved 
to perform better than traditional ML in many fields (Zhu et al., 2017). 
In traditional ML, feature engineering before model training is neces-
sary, because extracting features from a large amount of complex data 
using domain knowledge is considered to make the model more effi-
cient. More specifically, to better explore the potential of ML for water 
quality retrieval, we usually manually seek spectral bands and their 
simple or complex derivative features (such as band ratio) most related 
to WQPs before model development. The performance of most tradi-
tional ML models depends on the accuracy of feature extraction in the 
feature engineering. DL is usually considered to have the ability to 
conduct feature engineering by itself. By combining and transforming 
the input low-level features, the more effective high-level features can 
be extracted for model prediction (Reichstein et al., 2019; Urban et al., 
2016). In this study, to supplement the individual spectral bands, a set of 
simple RSIs were added as the model input features. The features could 
not be ensured to be highly correlated with the WQPs, and we only made 
a simple screening based on the Pearson correlation analyses (Section 
3.1). Faced with such a large number of features containing redundant 
information, the DL models showed higher win rates than the traditional 
ML models. 

In addition, we used the idea of multimodal deep learning to split all 
features into three categories (F1-band, F2-band, and F3-band) according to 
the number of the source spectral bands. Subsequently, we constructed 
an sNN for each category of features. Each sNN mapped the input 

Fig. 12. The estimated Chl-a (a), TP (b), and TN (c) variation of Lake Simcoe 
and its five most concerned areas from 1984 to 2020. 
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features to a higher dimension and eventually reduced them to the input 
dimension to try to learn more useful information (Fig. 4b). We hy-
pothesized that the three sNNs fully learned all features. Finally, the 
outputs of the three sNNs were concatenated and input into a new sNN 
for further information mining and the final prediction of the WQPs. 
According to the result that the MDL models outperformed the pDNN 
and even sDNN (with a similar number of trainable parameters) models, 
we inferred that learning each category of features independently 
through the sNNs could make the model efficiently control noises when 
learning more useful information. We also compared the model per-
formances with several other feature splitting methods (Table A.5). The 
results showed that the MDL models performed better with the feature 
splitting of the F1-band, F2-band, and F3-band. The model performances of 
most feature splitting methods were better than those of the sDNN. 

These results proved the contribution of the sNNs. 
We also evaluated the comparability of the MDL models-derived Chl- 

a, TP, and TN by using the overlapping areas of the adjacent TM, ETM+, 
and OLI images (Zhang et al., 2021). For the comparison between TM 
and ETM+, the TM image on 31 July 2007 and ETM+ image on 1 August 
2007 were selected. For the comparison between ETM+ and OLI, the 
ETM+ image on 15 September 2015 and OLI image on 16 September 
2015 were selected (Fig. 13, Table A.6). Previous studies have shown 
that the time windows within several days are oftentimes used for the 
matching-up of images and water quality measurements, and are 
generally considered to produce reliable results (Chen et al., 2020). 
Recently, Olmanson et al., (2020) demonstrated that a more relaxed 
time window of up to ± 30 days could be used to accommodate the 
coarse temporal resolution of OLI in Minnesota lake environments. 

Fig. 13. Overlapping areas of the TM and ETM+ images (a) and the ETM+ and OLI images (b); comparisons of the retrieved Chl-a (c, f), TP (d, g), and TN (e, h) 
between TM (31 July 2007) and ETM+ (1 August 2007) and ETM+ (15 September 2015) and OLI (16 September 2015). 
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Therefore, here we ignored the impacts of the 1-day time windows of the 
two groups of images on the comparisons. The results indicated that the 
MDL models derived continuous Chl-a, TP, and TN estimates from TM, 
ETM+, and OLI. Generally, TM and ETM+ are considered to be com-
parable (Mancino et al., 2020), thus the Chl-a (MAE = 6.54%, Bias =
− 0.72%), TP (MAE = 11.18%, Bias = − 0.07%), and TN (MAE = 7.71%, 
Bias = − 2.39%) derived from TM and ETM+ showed good consistency. 
Although there exist substantial differences in design between OLI and 
TM/ETM+, and the consistency of the Chl-a (MAE = 8.91%, Bias =
8.24%), TP (MAE = 14.98%, Bias = − 1.54%), and TN (MAE = 14.29%, 
Bias = 13.24%) estimates showed slight declines, we observed that the 
consistency was also better than that of the four spectral bands (i.e., 
blue, green, red, and NIR bands) (Table A.6). These results proved that 
the MDL models had the potential to independently learn the correla-
tions between TM, ETM+, and OLI Rrs and WQPs and generate contin-
uous time series water quality data sets using Landsat data. 

4.2. Model limitations 

The MDL models proposed in this study also had some limitations. 
First, as data-driven models, the model performance was highly 
dependent on data. All ground truth data for model training and vali-
dation was from the in-situ measurements of Lake Simcoe. Although 
these data sets covered sufficient water quality conditions of Lake 
Simcoe in time and space, the lack of training and validation data of 
other water bodies would lead to weak model generalization. For 
example, since the Chl-a data was only ranging in 0–11 μg L− 1 (Fig. A.5), 
applying the models directly to lakes with more serious eutrophication 
might be unfeasible. Therefore, the models proposed in this study were 
judged to be effective at the regional scale, and it was necessary to use 
new data to further calibrate the models before applying them to other 
water bodies. Second, the sample size in this study was not large enough 
for ML, although we strictly controlled the number of features being 
input into the models by the Pearson correlation analyses to reduce the 
required sample size. Generating data sets of larger size by including in- 
situ measurements from more water bodies was expected in future 
research. Third, we observed that the MDL model almost failed to esti-
mate TN in the low concentration region (< 3 mg L− 1), although the 
sample size in this region was not small (Fig. A.5). We inferred that the 
low concentration of non-OAC TN could not significantly change the 
concentration of the OACs in water, resulting in that the models not fully 
learned the correlation between the low TN concentration and the 
spectral characteristics. The correlations of TN with Chl-a and SDD 
(Fig. 3) also showed that TN hardly changed with Chl-a and SDD in the 
concentration range of 0–0.3 mg L− 1. However, the “black box” property 
of DL limited further analysis of the causes of the TN estimation failure 
in the low concentration region. In future research, biochemical exper-
iments might be used to further clarify the correlation between low TN 
concentrations and OACs to address this issue. Fourth, compared with 
traditional ML models, DL models have more complex structures, more 
hyperparameters, and higher error susceptibility. These characteristics 
make the DL models more prone to overfitting. Therefore, during the 
model development, carefully designing the model structure, tuning 
each hyperparameter as well as strictly monitoring the model losses on 
both training set and test set are essential. Besides, the high requirement 
of computational power and long training time also challenge the model 
development. 

4.3. MDL effectively separated Chl-a, TP, and TN estimates 

P and N are the main limiting nutrients for the growth of aquatic 
plants and are highly homologous, hence the concentrations of Chl-a, 
TP, and TN are cross-correlated. This challenges the accurate retrieval of 
any WQP without the impacts of other WQPs. To analyze the feasibility 
of the effective separation of Chl-a, TP, and TN estimates by the MDL 
models and improve the model interpretability to a certain extent, we 

used the integrated gradients algorithm in Captum (version 0.3.1) 
(Kokhlikyan et al., 2020) to calculate the contribution of each feature to 
the model outputs (Fig. 14). Captum is a model interpretability library 
for PyTorch. Using the state-of-the-art algorithms integrated into Cap-
tum, the contributions of features, layers, and neurons to the DL models 
can be quantified as a score within [–1, 1]. Zero means no contribution 
whereas positives indicate positive contributions and negatives the 
opposite. For convenient comparison, we used zero-valued baselines for 
all features in the contribution calculation. Different baseline settings 
lead to different contribution scores, even the reversal of positive and 
negative. Therefore, the results were relative contribution scores when 
the baselines of all features were zero. 

Fig. 14 indicated that the contribution score of each feature to the 
MDL models for Chl-a, TP, and TN estimation was different. For 
example, in the F1-band, F2 (green band) had the highest positive 
contribution to Chl-a and TP estimates, with scores of 0.75 and 0.67, 
while F3 (red band) had the highest positive contribution to TN, with a 
score of 0.62. This result matched the Pearson correlation analysis 
(Fig. 5). It was worth mentioning that the contribution scores were not 
always aligned with r. F4 (NIR band) had positive contributions to TP 
and TN, but a negative contribution to Chl-a. Although the input F2-band 
and F3-band of each WQP model were different after screening by the 
threshold, the same results were also observed. F9 and F16 had positive 
contributions to Chl-a and TN, but negative contributions to TP. F17 had 
negative contributions to TP and TN, but a positive contribution to Chl- 
a. Besides, we also observed that some features did not contribute to the 
models, for example, the contributions of F3 to Chl-a and TP were almost 
zero. Since the baselines of all features were set to zero, these contri-
bution scores were only relative results. However, we speculated that it 
was the features that contributed to the models and the differences in 
their contributions that provided the basis for the MDL models to 
effectively separate Chl-a, TP, and TN estimates. 

4.4. Feasibility of long-term water quality retrieval 

To generate long-term Chl-a, TP, and TN patterns of Lake Simcoe 
from Landsat raw images, we first used the DSF algorithm integrated 
into ACOLITE to atmospherically correct the TM, ETM+, and OLI raw 
images to Rrs data. Then, the ground truth water quality data was ob-
tained from the long-term (2007–2019) in-situ measurements of 22 
automatic monitoring stations widely distributed in Lake Simcoe. We 
considered that the water quality data could cover sufficient water 
quality conditions of Lake Simcoe. Subsequently, MDL models were 
constructed to estimate Chl-a, TP, and TN of Lake Simcoe using the Rrs 
data. We rigorously validated the models, and the results indicated that 
the MDL models performed well on the LSLMP test set and two inde-
pendent data sets (i.e., LSCUF and LSRCA) and outperformed four 
candidate DL and ML models and three other empirical algorithms. 
Based on the above analysis, we considered that the MDL models pro-
posed in this study could be used to reconstruct the long-term spatial 
distributions of Chl-a, TP, and TN in Lake Simcoe with the Landsat 
archive. 

However, the coarse temporal resolution of the Landsat images and 
noises (e.g., cloud) resulted in quite a small number of utilizable images 
in one year, which inevitably challenged the annual average accuracy of 
water quality. We calculated the absolute differences (ADs) of the 
annual average in-situ measured and satellite estimated water quality of 
Lake Simcoe from 2007 to 2019, and quantitively analyzed the rela-
tionship between the ADs and the number of utilizable images (Fig. 15). 
The sample size of the in-situ measurements was more than 110 every 
year, covering spring, summer, and autumn, which was considered to 
objectively represent the annual average water quality of Lake Simcoe. 
The results showed that the average ADs of Chl-a, TP, and TN were 1.12 
μg L− 1, 5.14 μg L− 1, and 0.42 mg L− 1, respectively, and the ADs 
increased with the decrease of the utilizable image number. In 2014, the 
ADs of Chl-a, TP, and TN reached 1.21 μg L− 1, 8.57 μg L− 1, and 0.67 mg 
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L− 1, respectively, due to that the water quality was estimated with only 
one utilizable image. While when the number of the utilizable images 
increased to four, ADs of Chl-a, TP, and TN significantly decreased to 
1.16 μg L− 1, 5.41 μg L− 1, and 0.46 mg L− 1, with percentages of 6.76%, 
36.87%, and 31.34%, respectively. When the number of the utilizable 
images was greater than six in 2015 and 2016, the ADs of Chl-a, TP, and 
TN were 1.06 μg L− 1, 2.79 μg L− 1, and 0.20 mg L− 1 respectively. These 
results indicated that the annual average water quality generated in this 
study had a certain deviation compared with the in-situ measurements 
owing to the limited utilizable image number. Therefore, we considered 
that these annual averages were only applicable to long-term water 
quality change trend analysis of Lake Simcoe, but not to the quantitative 
delineation year by year. 

5. Conclusions 

In this study, MDL models were developed and validated with Rrs 
data derived from Landsat raw images and synchronous water quality 
measurements in Lake Simcoe for long-term Chl-a, TP, and TN estima-
tion. The MDL models were trained with 70% LSLMP data (for Chl-a, N 

= 315, for TP and TN, N = 303) and validated with 30% LSLMP data (for 
Chl-a, N = 136, for TP and TN, N = 130) as well as two independent data 
sets, namely LSCUF (N = 89) and LSRCA (N = 58). The performances of 
the MDL models were also compared with other DL, ML, and empirical 
models (i.e., pDNN, sDNN, XGBoost, SVR, OC2, OC3, and MLR). The 
results indicated that the MDL models adequately estimated Chl-a (MAE 
= 32.57%, Bias = 10.61%), TP (MAE = 42.58%, Bias = − 2.82%), and 
TN (MAE = 35.05%, Bias = 13.66%) of Lake Simcoe, and outperformed 
the candidate models. Although TP and TN are non-OACs, the MDL 
models effectively captured the potential correlations among OACs, TP 
and TN, and Rrs, promoting direct non-OAC retrieval without prior OAC 
retrieval. Using the MDL models, the spatial distributions of Chl-a, TP, 
and TN of Lake Simcoe since 1984 were mapped, and in sequence, the 
water quality improvement effects of the LSEMS implemented in 1990 
and the LSPP implemented in 2009 were quantitatively analyzed. The 
MDL models were demonstrated to be capable to reconstruct the long- 
term water quality spatial distribution and contribute to efficient 
water quality monitoring in Lake Simcoe using Landsat Rrs data and in- 
situ measurements covering sufficient water quality conditions. How-
ever, due to the limitation of the training data, MDL models were 

Fig. 14. The contribution scores of each feature to the Chl-a (a), TP (b), and TN (c) estimates. Note that the results were relative contribution scores when the 
baselines of all features were zero. 
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considered effective at the regional scale. It was necessary to recalibrate 
the models with new data if the models needed to be applied in other 
water bodies. In addition, the cross-correlation among Chl-a, TP, and TN 
challenges the accurate quantification of any WQP without the impacts 
of other WQPs. This study quantified the contribution of each feature to 
the models, thus improving the interpretability of the MDL models for 
effective separation of Chl-a, TP, and TN estimates to a certain extent. 
The MDL models provide a practical regional-scale method for long-term 
Chl-a, TP, and TN estimation using the Landsat archive. 
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